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1. Introduction 
1.1 Project Overview 

The Dynamic Assembly for Systems Adaptability, Dependability, and Assurance project, 
(DASADA) was sponsored by Defense Advanced Research Projects Agency (DARPA), with the 
Air Force Research Laboratory (AFRL) serving as Lead Technical Agent. As part of the 
DASADA project, the team of BBN Technologies and JXML Inc., has developed an Assured 
Assembly Infrastructure (AAI) Toolkit that realizes software workflow architectures that can 
dynamically adapt based on specified performance objectives.  

The AAI Toolkit provides a collection of software and documented techniques to test a uniform 
assembly model for integrating heterogeneous system components. The AAI Toolkit also 
explicitly models Gauges that measure and drive the dynamic assembly and reconfiguration of 
the software architecture. Through “service contracts” and real-time feedback, the AAI 
dynamically adapts system architectures to optimize system performance with respect to 
performance metrics. 

The AAI Toolkit uses a dynamic assembly mechanism for constructing software architectures of 
software components and Gauges (DASADA [4]). It uses an adaptive workflow to reconfigure 
its architecture. It uses XML to bridge multiple-levels of description (metadata, architecture, and 
software). 

The AAI Toolkit consists of these elements and characteristics: 

• Components: Can easily add new plugins to extend the AAI Toolkit infrastructure or 
applications built using it. 

• Services and Contracts:  Services and Contracts identities a workflow protocol that 
defines the interaction of components. It consists of an event-based language 
specification and infrastructure assumptions about how system requirements and 
component dependencies are negotiated. 

• Assessors and Routers: Assessors and Routers comprise an infrastructure that interacts 
with Services and Contracts to perform requirements tradeoffs and drive creation of 
assemblies of components and Gauges. 

• Architecture Model: The Architecture Model is an external representation of the 
assembly of components and Gauges within the system. It serves as a representation that 
specifies the target system behavior and as a model of the actual form of a system (time 
varying). 

• Executors: Executors invoke the assemblies of components and Gauges to realize the 
specified software behavior. 

• Gauges: Gauges are a DASADA sensor type that provides constant feedback to the 
infrastructure so that it can composes/reconfigure itself to better match the requirements. 
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• Dynamic Adaptation of Services and Contracts. This feature allows Components and 
Gauges to be moved into and out of execution assemblies based on performance and 
changing application requirements. 

Over the course of this project we demonstrated the AAI Toolkit with two distributed web-
service applications. We showed how this technology can reconfigure itself from Gauge 
feedback. 

1.2 Final Research Products 

This project delivers a means for flexibly testing of distributed adaptive architectures. This AAI 
Toolkit consists of these research products: 

• A protocol for building and modifying assemblies of distributed services (workflow). 

• An agent-based infrastructure for instantiating the workflow over a real implementation. 

• Two demonstration applications illustrating core features of this research. 

• An EventAtlas for converting events from the distributed infrastructure into Architecture 
Description Language (ADL) form. 

• Procedures and algorithms for adapting systems compatible with the described protocol 
and the agent-based infrastructure. 
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2. Approach 
2.1 Motivation 

Building large, reliable software systems is difficult and expensive. One practice for managing 
such an effort is to use a system-of-systems (SOS) architecture. An SOS architecture makes the 
development of enterprise-scale applications easier, primarily because loosely-coupled systems 
are easier to engineer and maintain than more traditional, integrated designs. 

However, the Achilles heel of SOS systems involves the difficulty of repairing them in 
operational settings. Often SOS systems rely upon a variety of middleware and monitoring 
capabilities that may transcend multiple administrative and work groups. Currently available 
approaches tend to rely extensively upon the proverbial “human in the loop” to fix problems as 
they arise during operation. 

The objective of our research was to identify supporting capabilities that can coordinate service 
discovery, connector management, architecture monitoring, as well as provide access to 
mechanisms for remedial actions – e.g., tune Quality of Service (QoS). We would contrast this to 
an SOS solution that either relies upon extensive monitoring or one that is a “crazy quilt” of 
individual solutions stitched together. 

Our objectives stand in contrast to a “monitor-everything” and “fix it by operator” approach. 
Why? First, the human in the loop is slow and expensive. Second, setting up monitor probes by 
hand is hard to do correctly and is unlikely to be done correctly by many different developers. 
Furthermore, the sources of many problems will involve elaborate traces through many levels. 
Building monitoring conduits through large SOS implementations that link large numbers of 
users, processes, components, and domain models is difficult to do correctly. This leads to the 
third problem: it is hard to balance the quality vs. the quantity of information in large systems 
(too much or too little of either can be an impediment to making timely decisions). 

We contrast our approach also with typical Department of Defense and industry practices for 
managing system reliability. These practices are mainly focused upon developing and 
standardizing middleware component frameworks, or upon constructing operator-intensive 
processes for monitoring systems. In this research we sought a capability for managing and 
evaluating QoS concerns across a range of application and component granularities. Our 
approach is consistent with middleware solutions. Our service-based approach is agnostic to 
particular middleware approaches - this is particularly useful if one believes that no particular 
middleware solution can scale to all SOS systems (notably legacy systems). Our focus was upon 
the organizing principles for diverse community components to interact within an architecture 
(vs. individual interoperability, for e.g.). This provides a good foundation to think about 
collective behaviors and metrics within an application. 

Furthermore, our service-based approach can flexibly integrate feedback from external sensor 
sources in a number of ways. In this regard, a particular style of use developed by DASADA was 
demonstrated. Gauges and Probes were individually developed by the DASADA community, 
and their use was illustrated in two annual demonstrations. The DASADA community also 
specified a Gauge-and-Probe infrastructure (Common DASADA Infrastructure: CDI [3]) with 
which the AAI Toolkit was compatible. Integrating external sensor grids such as CDI with the 
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AAI Toolkit can offer other synergies. For example, bridging the services oriented architecture 
view of the AAI Toolkit with an object-level adaptive QoS middleware that can span a variety of 
platform and communication protocol spaces (e.g., [2]) could be lucrative. 

2.2 Architecture 

Our approach started with a number of research building blocks. Our goal was to look at this 
problem synergistically (whole greater than the sum of the parts) starting from these building 
blocks: 

• A service-oriented software model. 

• A reactive architecture model that distinguishes between low-level “autonomic” 
responses and high-level execution planning. 

• An adaptive model where DASADA Gauges can control how connectors and services are 
configured and used. 

Knitting these building blocks together were software agents. The collaborative exchanges of 
these agents and these building blocks instantiates a dynamic service architecture. 

We based our implementation on an Open Source DARPA agent infrastructure called Cougaar 
(www.cougaar.org). Our use of Cougaar served two purposes. First, it identified a specific 
implementation that is sufficiently flexible for building and testing ideas. Second, it provided a 
mature platform upon which to demonstrate our results. 

2.3 Scope of the Experiments 

In 2001 we demonstrated the core Service and Contract (SC) ideas using a webservices 
application (DASADA Technical Demonstration, Baltimore, [5]). We prototyped an Abstract 
Query Engine application. The Abstract Query Engine performed text-search, web-scraping, and 
database/query services for an Information Analyst tool. 

In 2002 we demonstrated a SmartChannels application of the AAI Toolkit (DASADA Technical 
Demonstration, Baltimore, [5]). The SmartChannels demonstration provided a “fail-safe” 
capability to an Information Analyst tool by monitoring critical connectors to remote services 
and intervening as needed. The SmartChannels system would route data to and from an alternate 
set of substitute or back-up services in lieu of the failed services.  

Through these experiments we were able to demonstrate: 

• A system of software agents that can replace services (substitution) and connectors 
(alternative pathways). 

• Software agents that can adaptively enhance their performance and the reliability of the 
workflow they instantiate. 
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2.4 A Local Strategy of Reactive Repair 

One approach for detecting errors and repairing systems would be to collect events then derive 
measurements of the running system and compare them against an external model of that system. 
In this external approach, solutions could be injected into the system via effectors [3,4]. The key 
here is to build a global picture of the system at a particular moment in time, and then to use it to 
decide a course of action. 

We pursued a contrasting approach based on accepting less-than-perfect information and 
reacting to events and metrics close to their source. By forfeiting access to the larger picture of 
the architecture and the rest of the system, the research objective was to trade-off speed with 
understanding. Thus, the techniques described in this report emphasize collocating mechanisms 
close to the components and connectors and repairing problems as they surface. The payoff is 
that our approach can intervene to solve problems before their effects spread. 

We see our approach as complementary to the external approach. In fact, a purely reactive 
approach such as ours cannot always work, e.g., addressing certain kinds of deadlock and 
stability issues can require a more complete understanding of the system. Thus, a hybrid 
approach may prove best in the long run; that is, when possible, fix problems quickly using local 
information and mechanisms, otherwise use an external reasoning system that can handle more 
complete (but arguably slower) analyses and repair. 

2.5 Other DARPA Research (Leveraged) 

Our objective was to test against complete prototype systems. We were able to do this by 
leveraging existing research and work. For example, we leveraged extensively from the Open 
Source community. We also incorporated other DARPA research into our technology mix, 
namely the Cougaar Open Source agent framework and the DARPA Agent Markup Language 
(DAML [16]). 
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3. Technical Discussion 
3.1 Agents 

AAI Toolkit agents are lightweight software entities that can encapsulate (or can control) 
component services. Agents coordinate amongst themselves to execute their constituent services. 
Agents monitor their constituent services and receive metrics and other event inputs from other 
agents or sensors (e.g., DASADA Gauges). And finally, agents also monitor their progress and 
learn to improve their own future performance. 

Cougaar [8] Open-Source software was our underlying agent framework. With Cougaar we were 
able to leverage a mature and well-maintained software codebase. Additionally, Cougaar’s 
proven scalability meant that we were able to deploy and exercise sizeable testbeds (> 18 agents, 
> 100 components in 2002). Larger system testing gave us greater confidence in our ability to 
generalize our research results. For example, it wasn’t until we started working with larger 
numbers of agents in 2001 that we realized the need to flesh out the concept of a service 
dependency neighborhood that surrounds each component. This neighborhood varies by 
availability of information (to the agent owning the component) as well as by the importance of 
the task. More important tasks can demand larger effort by the system – e.g., casting a wider net 
to insure that all dependent components are found. Without a sense of neighborhood and a set of 
policies for guiding how to work within and without that neighborhood, agents can saturate the 
communication bandwidth of the system by excessively messaging each other (acting greedily). 
This understanding, especially in the context of the SC protocol and infrastructure, was easy to 
overlook unless working with a larger testbed. 

Another important aspect of our use of Cougaar agents was that we wanted to be able to factor 
the design and ideas of the SC protocol from the implementation. Beyond its small footprint, 
Cougaar makes few demands upon the design pattern beyond a Plugin component model, use of 
publish/subscribe events, and the use of object replication rules for messaging between agent 
Blackboards. The simplicity of these design elements, as well as their usefulness in building 
more complex and sophisticated protocols, allowed us to develop a design that is portable to 
other frameworks. Other agent-based paradigms are compatible with our approach. For example, 
we also examined the use of an OMAR agent framework[1] instead of Cougaar. 

By using Cougaar we were also able to contrast our research with other planning work conducted 
within other Cougaar communities; e.g., from the logistics planning domain (Ultra*Log [6.]). In 
this way we were able to leverage previous experience. For example, some of the ideas 
surrounding our design of “Executor Plugins” and “Assessor Plugins” (detailed later in this 
report), were inspired by prior Cougaar work. 

3.2 Event-based Service Collaboration Language 

AAI Toolkit agents collaborate amongst themselves as well as negotiate internally with their 
components and infrastructure using an event-based “language”. This language is centered on 
publish/subscribe events. Events are contextualized by data objects that constitute a Logical Data 
Model (LDM). For example, publishing a Request data object on the local agent Blackboard 
indicates that a service is sought. Responding to this event, a Service Provider may then issue an 
Acceptance event (publication of an Acceptance object onto the Blackboard). Thus, from a 
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single event a cascade of other events (other services being sought, Assessors and Executors 
coordinating actions, etc.) can flow. 

Language elements may be replicated across agent boundaries according to well established 
rules; and in so doing, stimulate responses and activities throughout the system. The combined 
interactions of components, infrastructure, and agents are defined by a protocol – the Service and 
Contract protocol (described in detail later). So, for example, a Request object that fails to solicit 
a service response within a local agent (e.g., a service provider not responding to the request), 
may be replicated on other agents where responders may be found - subject to the rules of the 
protocol. In Figure 1 we see how a Request issued from a User Interface (UI) to an SC agent can 
lead to interactions among two agents. In this case only two of the required three services reside 
in the first agent. Through the interactions of the components and the infrastructure via the SC 
protocol, events are integrated into a unifying workflow distributed over two agents. 

Service Provider Plugin Workflow AssessorUI SC Router

Workflow Executor
SC Connector

Service Provider Plugin
(dependent)

Request

Acceptance

Request

Acceptance

ContractGroup

Remote Agent

Request

RequestGroup

ReceiptGroup

Contract (updated)

Contract Group (updated)

Acceptance (deferred)

Workflow executor stalls - missing
contract data

Workflow executor continues

UI notes Workflow is done

 

Figure 1: Example of the component interactions within a single agent based on the Service and Contract 
publish/subscribe “language”. 
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3.3 Component-based AAI Toolkit Infrastructure 

Composition of SC systems using the AAI Toolkit is based on the Cougaar Plugin model. 
Plugins in the AAI Toolkit come in two flavors. Some Plugins are infrastructure components that 
are used by the agents to encapsulate services used to help them organize planning and execution 
of services.  These are called Infrastructure Plugins. Another flavor of Plugin is Domain 
Plugins. Domain Plugins integrate application services (e.g., application code, gateways to web 
services, etc.). Domain Plugins do the work that constitutes the application. 

The AAI Toolkit infrastructure as implemented, based on Cougaar, only interacts with Java™ 
Plugins directly. However Plugins can interoperate with external processes via Java Native 
Interface or over socket. Using the AAI Toolkit plugin model we can easily integrate other 
DASADA-developed components such as Gauge and monitoring services. For example, in the 
2003 DASADA Technical Exposition, we demonstrated how a DASADA Gauge message bus 
could be integrated into an AAI system simply by swapping in Plugins that are able to 
communicate with the Gauge message bus using Java Remote Method Invocation (RMI) [27]. 
The DASADA Gauge message bus was a service that could potentially handle messages from a 
grid of Gauges or other sensor sources. 

For a more detailed examination of the compositional flexibility afforded by Plugins, see the 
Supporting Investigation sections of this document. Our inheritance of the Cougaar styled text-
configuration files to populate agents with Plugins enabled us to easily swap components for 
testing and experimentation.  

plugin = 
com.bbn.openzone.base.plugins.DAMLConceptManager(daml=TEST.app.daml,implies_ou
t=false) 

plugin = 
com.bbn.openzone.base.plugins.SCRouter(COMMS=USE_YP,MAX_SENDREQUESTS=1,CONCEPT
NAME=ROUTER_SERVICE) 

plugin = com.bbn.openzone.base.plugins.SCConnector 

plugin = com.bbn.openzone.base.plugins.WorkflowRegulator 

plugin = com.bbn.openzone.base.plugins.WorkflowAssessor 

plugin = com.bbn.openzone.base.plugins.WorkflowExecutor 

The core AAI Toolkit infrastructure Plugins are given below – they are used by agents to 
implement the Service and Contract workflow protocol. These plugins are described in greater 
detail in a later section.  

• Executor Plugin 

• Assessor Plugin 

• SCRouter Plugin 

• SCConnector Plugin 
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Other types of AAI Toolkit infrastructure Plugins include the WorkflowRegulator and the 
OntologyManager (or DAMLConceptManager as actually used in the software). These are not 
core to the implementation of the SC protocol but are necessary to making the infrastructure 
work within the developed AAI Toolkit. 

Domain Plugins can participate in an SC system so long as they provide the following interfaces: 

1. The Cougaar Plugin interface (See Cougaar Developer’s Guide [8.]) 

2. The AAI Toolkit Service Provider interface (see the SC Developer’s Guide [9]) 

All Infrastructure Plugins are Cougaar Plugins. Infrastructure Plugins may implement the AAI 
Service Provider interface, depending upon the Plugin’s role. For example, because the 
SCRouter serves as a broker for remote services within an agent and is able to Accept Requests 
on behalf of a remote service, an SCRouter appears to the infrastructure as a ServiceProvider. 
Thus, as a ServiceProvider, the SCRouter can Accept Requests using the normal mechanisms. In 
contrast, the Executor and the Assessor are not Service Providers… because in their roles they 
have no need to Accept Requests. 

To simplify the implementation of Service Provider components within the AAI Toolkit system, 
a base ServiceProviderPlugin class is provided. Any Plugins extending this base class will be 
known as Service Providers within an SC Cougaar system. 

package com.bbn.openzone.core.plugins; 

/** 

 * Base class from which Service Provider PlugIns (domain) can 

 * use (extend) for basic behaviors. 

 */ 

public class ServiceProviderPlugIn extends OpzSimplePlugIn implements 
ServiceProvider 

The ServiceProvider interface requires that the Plugin be able to declare its service type. Service 
types are defined using a DAML-based ontology. Each Agent (and all the services owned by it) 
are described by an ontology. Agents may share an ontology – but they are not required to do so. 
To be useful, a ServiceProvider should be able to subscribe to Requests on the Blackboard that 
are relevant to it. Presumably, the ServiceProvider would then be able to examine these Requests 
and Accept some of them based on some internal evaluation. Implicitly, the ServiceProvider 
would upon invocation provide some service relevant to the Request. 

An example of a simple ServiceProviderPlugin that performs rudimentary Request/Acceptance 
bookkeeping is provided in Figure 2. 
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/**
* A MOST BASIC SP PATTERN PLUGIN
* Which launches Dependency REQUESTS when notes a Request which matches
* its request.
*/

public class TestSPPlugIn extends ServiceProviderPlugIn
{

private List myDependencies = new ArrayList();

public void setupSubscriptions() {
// super.setupSubscriptions() must be called
super.setupSubscriptions();

myDependencies = getAllStringParameters(getParameters(), "DEPENDENCY=", "");

// setup subscription for Requests, noArg = use default SP predicate
setRequestsSubscription();

}
public void execute() {

// super.execute() must be called
super.execute();

List myNewRequests = getOutstandingNewRequests();
Iterator it = myNewRequests.iterator();
while( it.hasNext() ) {

Request req = (Request)it.next();
//System.out.println("[SP, ID=" + this.getPlugInID() + "> received request: " + req + "]");
BlackboardService bb = this.getSubscriber();

//
// accept() implicitly publishes Acceptance and any dependent Requests
// if no dependencies, myDependencies is empty list...
Acceptance ac = accept(req, myDependencies, Relationship.AND, bb, req.getData() );

}
}
public void invoke(List importsBindings,  Acceptance accept, DataConnector exportDC) throws NonInvocableContractException
{

System.out.println("--------------------------------------------------");
System.out.println("[TestSPPlugIn] accept.getParent().getData().toString()=" + accept.getParent().getData() );
System.out.println("--------------------------------------------------");

}
}

 

Figure 2. A minimal example of what it takes to “code” a Service Provider Plugin – it is a Cougaar styled 
Plugin that accepts matching Requests and issues a dependency Request (from Plugin parameters). Its 

invoke() method is stubbed - an actual domain Plugin would provide implementation. 

ServiceProvider Plugins in the 2001 and 2002 SC systems were demonstrated as short-lived 
services. A short-lived service is a service whose invocation is characterized as being of a short 
duration at whose completion a result is returned (including NULL result). Note that from the 
perspective of the infrastructure, a short-lived service that is serviced by a long-running process 
in the background is indistinguishable from a call to a Plugin in the same process. (A short-lived 
service is in contrast to a long-lived service, whose results might be streamed over a long period 
of time.) We conducted preliminary design work (in anticipation of a DASADA Phase-2 effort) 
into extending the SC design (in the same extensible manner as the Reliable Multicast 
Framework experiments described in later section) to support streaming connectors and 
workflow. This would have enabled handling of long-lived services within an SC system. 

3.4 Service and Contract Protocol 

Our core infrastructure comes from an Open Source DARPA-developed agent capability 
(Cougaar [8]) that has been shown to successfully scale to societies that represent the operations 
of 300+ military organizations and contain over 1800 domain components (Plugins). Cougaar’s 
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node-based architecture and component-based design provides scalable flexibility for the 
composition of large, testable architectures. 

The SC workflow protocol manages the dynamic response of a workflow of services to runtime 
performance metrics. The SC protocol is constructed from a Cougaar-styled “language” for 
wiring up components (Service Providers) within a distributed agent-based system. The 
vocabulary of the language consists of the events related to the publication and subscription 
(publish/subscribe) of objects onto the local agent Blackboards. Figure 3 illustrates the Service 
and Contract Logical Data Model (LDM). 

 

Figure 3. Core Service and Contract Interfaces (Logical Data Model: LDM). 

As illustrated, the following classes are key Service and Contract language elements: Request, 
Acceptance, and Contract. Instances of these classes (as well as other LDM elements) are used to 
contextualize a component pattern of publish/subscribe (events). The combination of the objects 
(language) and the pattern of events define the Service and Contract protocol. 

Because the components and infrastructure are reactive (communicate via publish/subscribe 
events), and because the SC protocol is largely parallel, the actual assembly and invocation of 
workflow structures from an infrastructure perspective is fast. 
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Consider that an incoming Request stimulates a distributed “chain of events” that leads to the 
composition and invocation of a distributed workflow. Services are assembled via a request-
accept process: services are requested, and Service Providers can agree to accept. Acceptance is 
initially tentative; after the infrastructure within each involved agent acknowledges the existence 
of a complete set of agreements, then all Service Providers are contracted, and invocation 
commences. The workflow assembly process flows from the root request outwards (“forward”). 
The invocation process flows in the reverse direction (leaves-to-root). 

When coordinating component assembly and invocation across agents, the SC design inherits a 
number of Cougaar computing assumptions, which are perhaps best summarized as follows: 
“Agents are widespread and coordination is loose.” To understand this concept, think of each 
agent as an island. An agent partially completes a workflow and then solicits for an external 
service provider (another agent) to fill in for missing services (e.g., service dependencies). 
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Figure 4 Publish/subscribe events and (distributed) Blackboard data model underlies the Service and 
Contract protocol. 

Service Providers are discovered, assembled, and invoked by a Service Request. A Service 
Request is converted into a distributed workflow via the interactions of at least two, but 
potentially many more services spanning many agents. Services are pledged by Service 
Providers (components). A Service Provider can be a proxy for an external process, a service, or 
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an entire system. Services are then contracted and invoked. The use of Contracts within the 
workflow is analogous to other service commitment forms such as Leases (in JINI) as well as to 
Service Level Agreements (in eLiza [33]). 

The SC language differs from other Cougaar languages (e.g., the military-logistics version [6]) in 
part because of its reliance on specialized infrastructure services (implemented as Cougaar 
Plugins) that enforce a more structured workflow protocol (e.g., explicit assessment, contracting, 
and invocation stages). Packaging of infrastructure services into Plugins makes it easy to 
bootstrap sophisticated behaviors from a basic set of building blocks. 

Services are described by a Resource Description Format [15] language: the DARPA Agent 
Markup Language [16]. One benefit of DAML that we exploit is that services can be 
hierarchically related in the service ontology. This is useful when matching services at different 
levels of abstractions. So, for example, a Request for a “Search Engine” service might be 
matched with a “GOOGLE Search Engine” service. 

In the next section we’ll discuss more fully the form of the SC protocol. 

3.5 Service Hypothesis (Plan) vs. Service Execution. 

The SC protocol enables instantiation of SC workflows whose effect is to coordinate services 
first by Plan and then by actual Execution. To instantiate an SC workflow within a single agent 
minimally requires a pair of infrastructure Plugins: the Assessor and the Executor. The Assessor 
is the capstone in the process by which the invocation of Service Providers is planned [(A.) + 
(B.) in Figure 5]; the Executor dominates the process by which once Service Providers are 
Contracted, they are actually executed [(C.) + (D.) in Figure 5]. 
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Figure 5 The Basic Service and Contract workflow 

As we see in Figure 5: 

• (A.) Service Providers PlugIns (labeled “SP”) tentatively accept requests. A “service 
chain” is constructed as Service Providers request additional dependency services, etc. 

• (B.) At each node, an Assessor infrastructure PlugIn monitors progress. When the 
Assessor is convinced the Service Chain is complete, the Assessor steps in and 
“Contracts” service chains. 

• (C.) The Executor notes when a Service Chain has been Contracted. The Executor then 
“invokes” services in reverse order. 

• (D.) A Service and Contract workflow serves as an “information network”. In the 
forward direction, data and constraints are propagated. In the reverse direction, results 
(service invocation) are propagated. Note that Service Providers “in the middle” of a 
Service Chain can monitor (and potentially change) data and results as they flow “to and 
fro”. 
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The tool of the Assessor is the Contract. An Assessor encapsulates the rules and capabilities to 
evaluate the Acceptances issued by ServiceProviders and to select the ones it wishes to commit 
to action. For example, multiple ServiceProviders may offer their services (issue an Acceptance) 
in response to an incoming service Request. The Assessor chooses one and awards a Contract. 

In the 2001 and 2002 demonstrations, the Assessor used simple rules to evaluate Requests. It 
essentially looked for the first Well-formed Request and issued a Contract. A Well-formed 
Request was one that had all its dependencies Contracted and that had no outstanding and 
unaddressed Constraints. 

Once the Assessor has Contracted a complete service branch (within the local agent), the 
Executor then invokes those Contracts. The design objective is to defer invocation of a service 
branch until all services (dependencies and constraints) have been Planned. Thus during the 
assembly of a service, workflow conflicts and constraints can be resolved before services have 
been actually invoked. 

A number of interesting questions were examined – for example, whether an Assessor explicitly 
can hedge its bet and award multiple Contracts for competing sibling services. It turns out that it 
can, but it must explicitly choose to do so. It can do so, for example, as an insurance against a 
single service not working out. But it must weigh the implication of the extra work incurred by 
the system (multiple competing threads of services). 

Within an agent, the planning and execution steps are handled differently. Because different 
branches of the workflow may be at different levels of maturity and because agents can only 
loosely coordinate, the planning step may occur while execution is occurring elsewhere. Service 
Providers interact with the workflow (Accept) asynchronously and at their own pace (how busy 
are they?)– meaning that rates of development of the workflow may vary within the system. In 
contrast, the execution step is serialized. Sequential execution occurs once Contracts have been 
issued (by the Assessor) – there is a single Executor that walks through the outstanding Contracts 
within any given agent.  

A design evaluation was undertaken on extending the SC protocol to permit multiple Executor 
Plugins operating in parallel within a single agent. The conclusion was that it is possible with 
some adjustment to the SC protocol so that Executor Plugins can communicate amongst 
themselves within a single agent - to coordinate actions. An alternative approach is the one 
adopted in the 2001 and 2002 demonstrations. In these demonstrations, parallel execution of 
services was managed by partitioning services into multiple agents (vs. a single agent with 
multiple services). As each agent operates independently, where branches split across agent 
boundaries, parallelism occurs. This suggests an interesting research question: what is the proper 
granularity of agent vs. service, and how can we quantify this relationship? Should agents 
encapsulate many services or should there be many agents? Ultimately we feel the answer 
depends upon the application and the granularity of the service/components.  

When assembling services over distributed nodes, an additional infrastructure Plugin is required 
(SCRouter). The SCRouter loosely coordinates the workflow between nodes – occupying an 
interesting research niche. Over the life of the BBN project, the SCRouter has evolved into a 
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futures broker for services. Specifically, it has become an SC infrastructure actor that places 
intelligent bets about the availability of remote services. 

Nominally, the SCRouter is an infrastructure component that watches the local Blackboard for 
unsatisfied Service Requests and decides what to do. In other words, if a service is not found 
locally, it ends up on the Blackboard as a Dangling Request (a Request no one has Accepted). At 
this point the SCRouter may choose to send the Dangling Request afield (typically) to other 
agents who might have services available that can satisfy the Request. How does it guess which 
remote agents might have available relevant services? When the SCRouter sends a Dangling 
Request to a remote agent, the SCRouter is essentially performing a bet on behalf of the 
infrastructure at the local agent. In order for the local agent infrastructure to stabilize around a 
workflow hypothesis/plan, the “unfulfilled” Request must be Accepted (and subsequently 
Contracted) by someone. In the case of a Dangling Request this is performed by an SCRouter 
who is acting on a sort of “bet” that it can find a remote provider: it Accepts the Request and 
then sends a copy on. 

In 2002 the implementations of the SCRouter used a three-tier algorithm when deciding where to 
send Remote Requests. First, the SCRouter looked at historical performance data (past workflow 
metrics), then it looks at a Yellow Pages service (if it exists), and then failing the above it 
broadcasts to the local neighborhood. 

The Service and Contract protocol is designed for a large distribution of agents where global 
synchronization of the activities of agents cannot be practically enforced, because to do so would 
either require insertion of a new infrastructure piece that can act as a central coordinator, or it 
would require a more elaborate plan negotiation phase. The latter option has been considered and 
preliminary design work has been completed.  

Every agent owns its own copy of the Service and Contract infrastructure components (e.g., 
Assessor, Executor, SCRouter,…). In other words, there is no global Assessor, Executor, etc. 
One consequence of this is that each infrastructure Plugin has visibility into only a piece of the 
workflow; i.e., the piece of the workflow that resides on the local Blackboard. Visibility into the 
activities of other agents is provided only to the extent they propagate SC LDM objects 
(Requests and Receipts). Replicated objects become “cues” that are translated into the local 
vernacular: local LDM objects and publish/subscribe events. 

The SC patterns presented here are exactly descriptive of behaviors within a single agent. In the 
case of where services are distributed among multiple agents, additional qualification is needed. 
The current SC design inherits a number of Cougaar computing assumptions, which are perhaps 
best summarized by the following rules: 

Agents are widespread and coordination is loose. 

While over time we are likely to modify some of these assumptions (optionally) to more exactly 
enforce the SC patterns in a distributed environment, it is worth exploring the current impact. 

Assessment and invocation are locally controlled. There is no such thing as a global 
assessment or invocation step. 
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Think of each agent as an island. An agent partially completes a workflow and then solicits an 
external service provider (another agent) to fill in for a missing service (e.g., a dependency). 

When Requests are sent to external agents there is no direct coordination between Assessors and 
Executors across agents. It is up to every agent to evaluate and invoke services according to its 
own rules and policies. While this may lead to local choices that are in conflict with unstated 
global preferences, it is best left to the owners of services to judge and manage application of 
their services. 

As we described earlier, constraints are propagated with the workflow and may be used to direct 
Assessors and Executors. An important distinction, however, is that without global control there 
is no mechanism of enforcement. It’s up to the local parties to “do the right thing.” 

There is no infrastructure-level synchronization of assessment or invocation of services. 

The SC infrastructure borrows from the Cougaar design philosophy that a large-scale 
synchronization of workflow elements is not scalable across large and widely dispersed systems. 
In the current infrastructure, this point is related to the following: 

There is no guarantee that another agent will notify you of what it did. 

This loose-coordination assumption is explicitly enforced in the SC protocol via these aspects of 
the design of the system: 

1.) When a Service Provider accepts a Request – the Acceptance is a tentative commitment. 
It isn’t until the Assessor (infrastructure) Contracts this Acceptance that this 
commitment is considered binding and recognized by the Executor (infrastructure). Once 
an Acceptance is Contracted, the Executor can invoke the underlying service. 

2.) Only after a Request has been Accepted and Contracted to an SCRouter can it be sent 
out to remote agents. In this capacity as an Accepting proxy, the SCRouter is essentially 
performing a bet on behalf of the infrastructure at the local agent that a remote service 
can be found. 
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Figure 6  Illustrates the inter-relationship of “Contracting” vs. invocation in a distributed SC  environment. 
Contracting process propagates “outward”. Then after successful completion, invocation progates in the 

reverse direction. 

At this point we’ll briefly introduce an example and highlight several notable details about the 
SC interactions. The example itself is discussed more thoroughly in the accompanying software 
manuals.  

Figure 7 illustrates the dynamic nature of SC workflow instantiations. The top two screen 
captures represent the state of the workflow early on in the assembly process – momentarily after 
an external Request has been injected into the agent EXAMPLE1. The visible cascading 
structure  

Request->Accept->Request->Accept etc. 

reflects the structure of the workflow within the EXAMPLE1 agent. This structure indicates that 
the EXAMPLE1 agent received commitments from two local services (TEST1, TEST2) and had 
gone off and was trying to find a dependent service (TEST3) elsewhere. Thus, at the end of this 
structure, there is a link (URL) representing the jump from the EXAMPLE1 agent to the 
EXAMPLE2 agent. These steps are represented as (2.) and (3.) in the schematic in the middle of 
the diagram. 



19 

The screen capture at the bottom of Figure 7 represents the stabilized workflow (time passes) 
from the perspective of EXAMPLE1 agent. You will note two other workflow structures; one 
represents the “switchback” (7.) in the schematic – the agent EXAMPLE1 contributes services at 
two very different points in the workflow life-cycle. The other workflow fragment represents the 
involvement (recruitment) of a Gauge service to satisfy a Contract Constraint evaluation.  
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Figure 7 Time-phased view of the Blackboard of an example agent. Critically it illustrates the dynamic 
nature of the Blackboard as SC events drive formation of the workflow. This example is taken from the 
REGRESSION example described in the accompanying software reports. 

A number of properties are visible in the user interfaces in Figure 7 that are worth highlighting to 
recap critical high-level SC ideas.  

• isContracted=boolean,    Is there a Contract associated with Acceptance? 

• isPledged=boolean,        Has the Request been Accepted? 

• isDeferred=boolean,      Has a Request been accepted by an SCRouter (for remote 
exportation)? 



20 

• isInvoked=boolean,      Has the Contract been invoked (Executor)? 

• isFailed=boolean,         Has the Contract been invoked and failed? 

• isSuccessful=boolean,   Has the Contract been invoked and successful? 

• isTimedOut=boolean   Has there been an attempt to invoke the Contract but it timed 
out?  Nuance difference for the case of Requests sent remotely – has Results come back 
yet? 

An interesting (and subtle) point worth highlighting here has to do with the earlier mention of a 
Service Neighborhood. In the example of Figure 7, the question posed to the EXAMPLE1 agent 
concerns how far to go afield to look for service TEST3. TEST3 is the service that the TEST2 
service claimed as a dependency – a Request beneath its Acceptance. The simple reply is that 
there is some notional neighborhood that surrounds a particular service from within which 
candidates should come. The answer then is that the service should come from the neighborhood 
of the requester. 

What this neighborhood denotes and its exact shape and size depend upon the application and the 
routing used. Thus, in the 2002 demonstrations, the neighborhood of an agent with respect to a 
particular service was defined as: 

1. The set of agents with registered matching services in the Yellow Pages. 

2. The set of agents with whom an agent has dealt with in the past for a service. 

3. A preconfigured set of N closest agents (arbitrarily defined in the demonstration 
scenario). 

This is not a general definition. Other SCRouters may choose to instantiate other algorithms and 
approaches. During demonstrations, 3 (above) is tuned by ourselves to throttle the performance 
of an SC system based on the speed of the machine(s), connectivity, the interest-level of the 
audience, etc. Make N in 3 too large and the cost of messaging becomes too pervasive. 

All this poses an interesting question. What distance may a service reach out? What is the 
measure of distance? Is it the workflow graph distance, or some other measure of the separation 
within a process?  In Figure 7 we see this point brought to home. We can see how agents can act 
as service middlemen intervening at different points in the workflow lifecycle. Thus the 
EXAMPLE1 agent can “ante up” services at three different points in the REGRESSION test 
workflow lifecycle: 

• First providing initial services anchoring the workflow. 

• Later providing supporting services to other services owned by other agents. 

• Finally potentially a Gauge service in response to a runtime verification request (if a 
Constraint is issued against Gauge1 service). 
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3.6 Gauge Services 

In the previous section we described how, from the SC infrastructure perspective, a Gauge can 
be many things. The infrastructure imposes no restriction on what a Gauge service provider can 
test; it only asks that it interact with the workflow in certain scalable ways. A Gauge must appear 
to the infrastructure as any other service, component or otherwise. 

As with any other component service, a Gauge is “just another Plugin” (in the Cougaar sense), 
which can, in fact, act as a proxy for an external Gauge service (such as DASADA Runtime 
Gauge Infrastructure). This last point was a key feature that would have well supported a 
DASADA Phase 2 initiative.  

Whatever constraint language an application uses to communicate with its Gauges, the definition 
of an SC constraint language is beyond the interest of the SC infrastructure. How an application 
speaks to its Gauges depends on its domain and the units of the measurement of its Gauges. It 
should be noted that a constraint language used by Gauges can be extremely simple. For 
example, in the 2001 and 2002 demonstrations, what was communicated to Gauges were an 
ordered set of threshold values. Or it can be, at the other extreme, a full language that is 
interpreted/executed within the Gauge services. In 2002 we were experimenting with more 
elaborate languages based on J-scheme [30]. In this case, an ASCII Scheme script was 
transported within the Constraint LDM object and was interpreted at the receiving Gauge. We 
convinced ourselves that this was practical within an SC system as currently defined. 

For interoperability purposes, just as communities of related applications need to interact with 
common service ontology, they may need also common “languages” for describing constraints. 

The following are a few sample “Gauges” - to illustrate the breadth of possibilities: 

• A Gauge that tests the availability/version of a local Open Database Connectivity 
(ODBC) driver before use. 

• A Gauge that tests via a Simple Network Management Protocol (SNMP) agent whether 
LAN connectivity can support intended application use. 

• A Gauge that tests the current battery power level for the local node (preferences to 
services can be tailored to power levels). 

• A Gauge that tests internet connectivity – e.g., test access to remote service before 
recruiting. 

• A Gauge that tests system configuration - e.g., to insure that an application service may 
execute without conflict. 

3.7 Hints (Directive) 

Beside Constraints, another important type of Directive is the Hint. In the 2001 and 2002 
demonstrations we illustrated the power of Hints by using them to drive the optimization of the 
workflow based on roll-up times of past performance and individual service invocation times. 
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Roll-up performance was measured with respect to the time it took the infrastructure to locate 
and connect services to satisfy Requests. These metrics were employed with respect to entire 
branches of a workflow, and performance metrics are indicators of the efficacy of the Service 
and Contract protocol and infrastructure. Individual service invocation times were employed 
with respect to the time it took to invoke a service. This measure was particularly useful for 
driving choices of substitute services. In this way otherwise identical services could be selected 
based on their different invocation latencies. 

Based on these metrics (and other sorts are possible), we demonstrated how, through the use of 
only mechanisms local to individual agents, Hints can be computed and used to shape future 
workflows. 

We were able to show: 

• How Directives (Hints and Constraints) can be propagated along a distributed workflow 
to shape system “memory”. Our approach was compatible with a number of 
reinforcement learning techniques. Our approach has a loose analogy with the human 
nervous system in that it flows information and integrates decisions along distributed 
workflow structures. 

• How local adaptation can be driven by the “lateral inhibition” of substitute services using 
Gauges to optimize performance for large service fan-outs. 

• How self-describing architecture descriptions can be generated to track dynamic 
adaptation. Descriptions were output in an Architecture Description Language (ADL) 
format for analysis and human comprehensibility. 

We used “information decay” as a means to de-conflict generated performance expectations. 
Specifically, in the DASADA 2002 technology demonstrations we showed how “information 
decay” can be used to de-conflict Directives generated at various points in the distributed 
workflow. Essentially, the idea was as follows: 

1. As performance metrics were “flowed back” along the workflow network they became 
“less convincing” to the infrastructure where encountered, as facts that the infrastructure, 
at the point of encounter, should use to base future decisions.  

2. On the other hand, while less convincing, these facts had some value. Given enough 
confirming facts, the infrastructure at the point of encounter might choose to pay 
attention. 

The rationale for (1.) is a question of relevance. 

• Metrics farther away are best decided by agents (Hints) closer in. Recall that all agents 
generate Hints along the entire path that the metrics flow back. 

• Metrics from farther away are against services farther away; the likelihood of intervening 
alternatives (substitute services, logical branchings) is greater.  

• Metrics are less reliable (because of time separation). 
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The demonstration implementation worked as follows. Each piece of information within the 
infrastructure was represented by an Annotation object. Annotation objects were created by the 
infrastructure at various junctures and represent a sort of “message” from a named sender 
without an explicit receiver. The messages (Annotations) are inspected at various points in the 
infrastructure as they are propagated upstream with the Results. At each point the infrastructure 
may choose to exploit this information. For example, WorkflowAssessor Plugins (an SC 
infrastructure Plugin) uses Annotations from SCRouters to glean timing information about 
remote services. 

Each Annotation has a value attached to it. That scalar represents the distance that Annotation 
has traveled at the point of inspection. Each time an Annotation crosses an agent boundary it is 
decremented by the infrastructure. Higher “decay” is translated into lower weights for Directives 
at the point where these Directives are created. So for example, the same WorkflowAssessor 
infrastructure Plugin creating Hints about timing expectations of remote services would interpret 
the distance that Annotation has traveled as how strongly it should “hint” about a particular 
remote service. 

The motivation for using Annotations to compute decay is to de-conflict competing sources of 
information within the system. Recall that all agents are capable of generating Directives, hence 
the need for the consumer of Directives to be able to discriminate among those it receives. As 
Figure 8 suggests, some agents will tend to generate more Directives than others, but these will 
tend to be of “lower quality” as they are based on information that has traveled a greater distance 
(where distance = hops across agent boundaries). 
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Figure 8 (Left side) Service and Contract workflows represent bi-directional information flows. (Right side) 
Directives (Hints and Constraints) are automatically generated and are weighted to reflect the quality of 
information consumed in their formulation. Upstream nodes tend to generate more Directives, but of 
lessor quality. 

The SC Hints algorithm is based on the flow of information along the SC workflow network. 
The containers for information are instances of an LDM class called the Annotation. The 
Annotation is a text repository that may contain a number of individual attribute-value pairs of 
text information. The Annotation is a simple class that encapsulates text source to which the 
infrastructure might write as it flows past. Annotations are attached to Results – an LDM object 
that flows back with the execution results. 

As a workflow is composed, Hints (along with Data and Constraints) flow outward. As the 
workflow is invoked (leaves first, working to roots), Results and Annotations flow inward. As 
Annotations flow inward, they can be inspected by the infrastructure at various junctures (private 
communication) to glean specific pieces of information. Annotations are collected and 
interpreted by the SC infrastructure at each agent to create Hints. Hints then are used to suggest 
how future workflow might be constructed to improve performance. 
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In the 2002 we demonstrated two types of Hints: 

• "Bias SCRouter to send Requests of specific Concept to specific Agent" (Hint type = 
TYPE__DIRECT_ROUTING) 

• "Bias Workflow Executor on Timeouts with respect to specific identified Services" (Hint 
type = TYPE__INVOCATION_TIMEOUT) 

Hints come in two flavors: Strong and Weak. Whether a Hint is Strong or Weak is determined by 
the weight associated with the Hint. The current very simple algorithm is given as: each Hint 
type has a constant Weight Threshold associated with it. If the weight is above threshold, then 
they are Strong, else are Weak. 

What it means for a Hint to be Strong or Weak is context-dependent upon the consumer of that 
Hint (an infrastructure component). So for example, a Strong Hint of type 
TYPE__DIRECT_ROUTING will be interpreted by the SCRouter to mean “route this Request to 
the target location at the exclusion of all other considerations”. The Weak version is taken by the 
SCRouter to be a suggestion that it may ignore in favor of other information it has access to – 
e.g., an external Yellow Page service. In the 2002 demonstration, the SCRouter treated Weak 
Hints probabilistically when it had alternative information such as from a Yellow Page service. 

The intent was that these context-sensitive interpretations would be altered by Policies. In 2001 
we demonstrated how Policy decisions could be used to tune whether or not Agents would 
ignore incoming Constraints. 

3.8 Constraints (Directive) 

Using the described SC building blocks, more sophisticated workflow behaviors can be achieved 
through specialization of the infrastructure components (for examples, see the Supporting 
Investigations section of this paper). Another means of growing the workflow is by extending the 
infrastructure with new capabilities (components) and through corresponding extension of the 
supporting SC protocol. A third area where significant customization is possible is by 
introducing new Directives for use by the SC infrastructure. One important type of Directive is 
the Constraint. In the 2001 and 2002 demonstrations, we illustrated the power of this idea via one 
type of Constaint - the Contract Constraint. 

Contract Constraints are SC elements that are concerned with the assembly/execution of a 
workflow. Constraints can be bundled with the top-level service Request. In this case they would 
represent a requirement about how Requests are to be performed or interpreted. A Service 
Provider can also tag a Constraint to a Request that it Accepts. From whatever point a Constraint 
is introduced into an SC workflow, Constraints are propagated downstream from the point of 
their insertion into the workflow graph. Constraints, as do all Directives, propagate towards the 
leaves from where they were inserted. See Figure 9. 
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Figure 9 . Constraints (as well as other Directives) flow “downstream” from their point of insertion in an SC 
workflow. Hence, a Constraint inserted at a point in a Service Branch (Request) will “Govern” or influence 

the service branch beneath the point of insertion. 

Contract Constraints govern the invocation of services. They identify the service signature of the 
relevant Service Providers. Services are identified by name in the name-space of the community 
of Service Providers within which the workflow spans. 

Service and Contract Constraints specify a target service, a Gauge service, and an optional 
Constraint expression (string). See the example below. 

// 

// deprecated Plan Service Provider “servlet” model for accessing Agent 
Service (ConceptService) 

// 

conceptService = 
(ConceptService)pd.getServiceBroker().getService(this,ConceptService.class, 
null); 
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Constraints are attached to Requests. (In the current infrastructure, only “Contract Constraints” 
are used.) Contract Constraints are attached to a Request and govern all Contracts associated 
with any Acceptance “beneath” that Request. 

Before service Contracts are invoked they are checked for any Constraints that govern them (the 
Constraint identifies the contracted service provider). For every Constraint found, another Gauge 
service needs to be recruited (via the same Request/Acceptance/Contract assembly paradigm) 
and invoked as a test. 

Gauge services have access to the Contract data, to a constraint expression as part of the 
Constraint, and to the normal Service Provider and agent runtime, enabling them to determine 
whether to accept a Contract. In making such a determination, a Gauge service, for example, 
may evaluate the data, may consult an instrumentation substrate (DASADA RTI), or otherwise 
examine evidence in its operating or network environment. If any of these Gauge services fails to 
respond with a Boolean True – then the PRE condition test failed and the target Contract is failed 
before it is invoked. 

A.

B.

 

Figure 10: Using the SC Blackboard viewer – time-phased view of the runtime interaction of the PRE 
Contract Constraint and Gauge recruitment. 
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Figure 10 illustrates the time-phased relationship of Constraint and Gauge services using an SC 
Blackboard viewer. The Blackboard viewer is a simple HTML rendering of the contents of an 
agent Blackboard. It displays the fragment of a workflow (assuming a distributed workflow) 
located at that agent. The figure also illustrates the state change associated with a Contract for a 
particular service of type TESTER11. 

In Figure 10, the top-half shows the Contract for TESTER11 as not invoked. This is due to the 
dependency (signified by A) of this Contract upon the successful evaluation by a Gauge service 
of type GAUGE1 on the input data (PRE condition test). This dependency was stipulated by a 
Contract Constraint. 

The bottom-half of Figure 10 shows the successful invocation of the Contract for TESTER11. 
This was possible after the dependent Gauge completed its successful evaluation of the input 
data. This is indicated in the figure by B. 

Note that in the interval of time between A and B, the Contract of TESTER11 is effectively 
blocked. This is because that service cannot be invoked until the Gauge reports back a successful 
result. 

In the SC system, the infrastructure actor called the Executor will activate a new service Request 
branch if an unresolved (outstanding) Contract Constraint is detected. This evaluation happens at 
runtime. An advantage of this “late evaluation” of Contracts is that Gauges can be inserted into 
workflow assemblies as they are actually needed. This means that we can design our constraints 
to conditionally request evaluations of Gauges based on prior results. 

The process for assembling Gauge services in response to a Contract Constraint requirement is 
identical to the process used for other component services. A Gauge service itself differs from 
other component services in that its “service” is to interpret a constraint expression and return 
some evaluation rendered by that Gauge. 

There are three useful consequences of this approach: 

• It simplifies design and implementation. 

• It enables the modeling of Gauges just like any other Service Provider (component). 

• Just as with any other Service Provider, Gauges may rely on support form other services: 
a Gauge, as a Service Provider, can request additional services. 

• It suggests a useful approach of parsimony: other kinds of Constraints might be 
developed that can reuse existing SC mechanisms. 

From the perspective of the SC infrastructure, the list of public facets of a Constraint is at this 
time limited. The main ones are: 

• A Constraint is a type that indicates to the infrastructure that special handling is required. 
For example, an Executor looks at a Contract Constraint and decides whether to apply to 
a PRE or POST invocation step. 
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• A Constraint identifies a target service type. In the case of when a Constraint is a 
Contract Constraint, the target service type identifies those services whose Contracts are 
to be evaluated.  

• A Constraint has an evaluation service type. This is the service that will be summoned by 
the infrastructure to conduct the evaluation. This service is a Service Provider (in the 
sense of the SC infrastructure) of a specialized type (a Gauge). 

A Constraint can also carry a private payload to the Gauge. For example, the Constraint can 
carry a set of rules or configuration to be used by the Gauge in conducting its evaluation. For 
DASADA this was a means of allowing us down the road to integrate with other contractor 
constraint engines and the like. 

Thus, a Gauge in an SC system can be defined as a service that measures something of its 
environment (system) and returns a “go/no-go” (Boolean) signal that the infrastructure uses to 
decide whether to proceed with a particular branch of the workflow. A Gauge service may be 
provided with application context - by passing in data, constraint expressions, thresholds, or 
other guidance that the Gauge service may choose to use to help it decide. 

While a Gauge that has been recruited to test a Contract Constraint must at least evaluate 
Contracts and return a signal (Boolean), it can also attempt some remedy as a side-effect. So for 
example, a “proactive Gauge service” may solicit another service (as a dependency) to perform 
some remedial activity. For example, given this constraint: “when a contracted service opens a 
socket, validate that this host has network access before you try to invoke this service,” suppose 
a Gauge that can test for this exists. It may try (as a side-effect) to recruit and re-launch a new 
modem service (etc.) if it notes a failure. 

On innovation of the SC protocol and infrastructure design is how Gauges are handled. In an SC 
system, Gauges are just like other services (Service Providers). The only difference is that 
Gauges can be recruited dynamically by the infrastructure on an “as needed” basis. So, for 
example, an Executor about to invoke a Contract might notice that an outstanding Contract 
Constraint now applies and then goes off and recruits a Gauge and its dependency services to 
provide a required evaluation. Figure 11 illustrates one scenario. Noteworthy are these points: 

• Gauges are modeled just like any other component: they are Service Providers. 

• Gauges can be factored from their service dependencies. A Gauge is a Service Provider, 
and as such it can request other services for additional inputs. 
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Figure 11 The Contract Constraint mechanism re-uses existing service Request/ Acceptance/ Contract 
pattern. 

3.9 Policies 

Service and Contract Policies are LDM classes whose instances are inserted into agents and used 
to modify infrastructure behavior at that location. In 2001 we demonstrated a simple version of 
this idea: that SC Policy objects could influence Agents to ignore and remove Constraints from 
workflows that pass through them. Policies, as they have been developed within the SC system, 
have been conceptualized to be suggestive – in that an agent may choose to ignore a Policy based 
on more compelling information it may be available locally. In the 2001 demonstration scenario 
(Figure 12), we illustrated how a Policy “switch” could alternatively induce workflows to fail 
and then to succeed. In Figure 11, a Policy would be inserted into agent (F.) that would strip off 
(and alternatively let remain) Constraints on workflows passing through the agent. In the 
demonstration we tagged workflows with impossible Constraints (that could never succeed) and 
through Policy changes, effectively turn on or off the connector (F.) to (D.). 
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(B) User Abstract Query Service

(C) Google Query Service

(D) Cache Services

instantDb

(E) URL Query Services

“forward propagation” (requirements, constraints)
“backward propagation” (results)

(F) AltaVista Query Service

 

Figure 12: The 2001 DASADA demonstration featured use of Policies to turn-on and turn-off flow of 
Constraints. 

3.10 XML 

The Service and Contract workflow native representation consists of Java ™ objects located on 
the distributed agent Blackboard. These data elements retain the working knowledge (present 
and past) of its component workflows. We have experimented with a number of approaches 
based on XML Data Type Definition (DTD) and Schema-based techniques for specifying data 
translation. An early technique we used to obtain snapshots of the system was based on 
generating XML documents by serializing data objects on a local Blackboard. Contents 
(documents) across Blackboards were cross-linked using the native XML URL and XLink 
representations. Our subcontractor, JXML Inc., provided software and consulting services on 
techniques for manipulating XML models and parsing steps based on successive transformation 
steps of XML document data (reference Software Manual accompanying this report). 
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Figure 13. Single Service Chain in Workflow XML Serialized 

XML serialization underlies much of the mechanism for translating Service and Contract 
workflow representations into and out of cleartext ADL (Architecture Description Language) 
and data document XML formats. 
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4. Demonstrations Overview 
In 2001 we demonstrated the core Service and Contract (SC) ideas using a web services 
application (DASADA Technical Demonstration, Baltimore, [5]). We prototyped an Abstract 
Query Engine application. The Abstract Query Engine performed text-search, web-scraping, and 
database query services for ISI’s GeoWorlds [7] Information Analyst tool. The 2001 GeoWorlds 
scenario involved a hypothetical Information Analyst using the Abstract Query Engine and the 
Geowold’s client to analyze data from websources. 

In 2002 we demonstrated a prototype SmartChannels application based on the AAI Toolkit 
(DASADA Technical Demonstration, Baltimore, [5]). SmartChannels provided a “fail-safe” 
capability to a GeoWorld’s scenario by monitoring select critical connectors to remote services 
and intervening as needed. We embedded probes into the Geoworld’s client software to detect 
problems. Upon detection of a problem, control and data would flow to the SmartChannels 
system. The SmartChannels system mirrored the failed connector and would route data to and 
from substitute services in lieu of the failed GeoWorld’s services. For demonstration purposes, 
failures were induced. 

In 2002 we showed how, using these building blocks, we can implement an adaptation model for 
distributed services based on Gauge feedback. In 2002 these building blocks were applied to a 
“Smart Connector” demonstration. A Smart Connector was an AAI Toolkit application that was 
able to shape its configuration and establish new connections to new (substitute) services should 
they be needed. New services are recruited in lieu of the old should performance constraints and 
expectations be violated. 

Figure 14 below illustrates how our 2001 and 2002 testbed systems were constructed using the 
SC building blocks. In order for our systems to be credible from a testbed perspective, we sought 
sufficient breadth in our demonstrations to examine how the reactive and adaptation concerns of 
an SC workflow might interact within a complete system. 
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Figure 14 Testbed Layered Research and Technology Model 

4.1 2001 Technology Demonstration 

BBN-DASADA successfully developed and demonstrated a 2001 prototype of an SC 
application: The Abstract Query Engine (AQE). The AQE was used by a GeoWorld’s client 
application (ISI) to query and obtain content from online search engines. The Abstract Query 
Engine was used in conjunction with other DASADA products to demonstrate an Information 
Analyst scenario at Pacific Command (PACOM). 

The Abstract Query Engine networked almost two dozen service types (infrastructure and 
domain/application services) distributed on five nodes, to demonstrate a distributed “meta-search 
engine”. Figure 15 outlines the basic demonstration scenario. The Abstract Query is ultimately 
reconciled with either a query to a Search Engine Service Provider. Search Engine Service 
Providers came in two flavors in this demonstration: Google and AltaVista. Each flavor of 
Service Provider knows what it had to do to issue a query and obtain usable results from their 
respective WWW search engine. For example, they knew (or rather knew the appropriate other 
services that were recruited) how to use database, socket management and text parsing and data 
aggregation services to return data that could be handed to GeoWorlds or Excel for display.  

The demonstration illustrated how the SC mechanism can assembly the appropriate services into 
a distributed workflow that can satisfy the end-user’s needs. Within the Abstract Query Engine 
system of agents, there is no initial pre-configuration. Services are wired up on-the-fly, as 
needed. This allows the system to respond to failure by reorganizing its configuration. In the 
2001 demonstration, we induced failure of the first choice (Google) by insisting on an impossible 
Constraint. Once this occurred, the SC system would reconfigure itself around the AltaVista 
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Service Provider and its dependent services. Figure 15 roughly illustrates the configurations of 
the agents to satisfy the 2001 demonstration. 

(B) User Abstract Query Service

(C) Google Query Service

(D) Cache Services

(E) URL Query Services

instantDb

 

Figure 15  The basic scenario illustrated in 2001. 
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(B) User Abstract Query Service

(C) Google Query Service
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instantDb
(E) URL Query Services

“forward propagation” (requirements, constraints)
“backward propagation” (results)

(F) AltaVista Query Service

 

Figure 16 Abstract Query Engine (2001 Demonstration system). 

Figure 16 describes the relationship of the Abstract Query Engine with the SC, AAI Toolkit, and 
Cougaar technology layers. It articulates the distinction between the application layers (AQE – 
2001, SmartChannels – 2002, described later) and the SC and Cougaar infrastructure layers. 
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Figure 17 Diagram illustrating “layered” technology approach of BBN-DASADA. It is important to note that 
the main BBN-DASADA contribution (“SC” technology) is a not in itself an application but a platform upon 

which application workflows can be built. 

Two classes of user interfaces were demonstrated in 2001 (Figure 18 and Figure 19) desktop 
application interfaces and browser interfaces. In Figure 18, shows that desktop applications such 
as ISI’s GeoWorlds and Microsoft’s Excel were integrated with the AAI Toolkit agent system. In 
the second case, HTML browser interfaces were used to show-off a variety of developer UIs. 
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Figure 18 Abstract Query Engine (2001 demonstration) had two application interfaces: GeoWorlds, Excel. 
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Figure 19. Number of developer user interfaces based on the Cougaar webserver have been developed. 

In 2001 we used a commercial hyperbolic tool [29] to view the interactions of the Service and 
Contract components during execution. Figure 21 shows these views in greater detail. Later, in 
2002, we transitions to views based on an Architecture Description Language (ADL) 
representation. Hyperbolic visualization provided a useful paradigm for packaging and 
navigating a vast quantity of low-level SC events (publish/subscribe SC LDM objects onto 
Blackboards). However, it quickly became apparent that with a system of any size, a more 
abstract representation of architecture would be necessary. The events were captured and 
transported over an Apache Log4j logger channel (distributed) [31]. Figure 20 illustrates the 
process used in 2001 for visualizing Service and Contract events.  
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Figure 20 In 2001 workflow events are collected via Log4J. 
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Figure 21 Constructing an architectural model for visualization from events. 

Also apparent from the 2001 demonstration was the important role an instrumentation and 
feedback channel outside but integrated with the SC system (e.g., [3]) could play in enhancing 
the reliability of the system. In 2001, the Abstract Query Engine demonstrated the performance 
detriment (time/latency) of an SC system operating with a service in a failure mode without a 
Probe/Gauge layer to consult. The SC system continued to operate but was making decisions 
based on Policy assumptions about failure versus acting on actual knowledge. For example, 
when a downstream service failed catastrophically, the upstream agent had no means of 
discovering this. In the 2001 demonstration, it would decide failure of downstream services on 
the basis of “timeouts” (a Policy determined time interval). 

Ideally, we would prefer an error signal (explicit message, or implicit missed health beat) to 
indicate when services enter troubled or failure modes. Of course this is not fool-proof – who 
monitors the monitor, etc.? However, a solution which integrates monitoring feedback 
organically into the distributed decision making process will be better off. In our paradigm, 
monitoring feedback from external infrastructure is integrated as another Gauge service. We 
provided limited demonstration of this use of the Gauge concept in 2002 (see CDIGauge in later 
section). 
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The failure scenario in the 2001 demonstration centered on the cascading cost of a lack of timely 
error signals in a distributed system. In our case, we illustrated how a single failure timeout can 
lead to a compounding of timeouts across a system. This implies a significant performance hit 
(time) as it’s rolled up to the workflow root. 

Reliable and predictable use of services assumes the
Timely adaptation of distributed plans

?

Example: “failure cascade” compounds cost 
across the system

(B) User Abstract Query Service

(C) Google Query Service

(D) Cache Services

instantDb (E) URL Query Services

(F) AltaVista Query Service

 

Figure 22 We demonstrated in 2001 the important role of a Gauge/Probe infrastructure (DASADA) in an 
adaptive system. 

4.2 2002 Technology Demonstration 

In 2002 we demonstrated an application of the AAI Toolkit called SmartChannels. This was a 
connector for insertion into SOS (System of Systems) applications that improved connector 
reliability. As in our 2001 demonstration, the scenario focus was ISI’s Geoworld client 
application. We demonstrated how, using SmartChannels, one could improve the reliability of 
distributed systems such as GeoWorlds. 

In the 2002 demonstration we highlighted capabilities supporting self-repair and monitoring in a 
distributed system-of-systems architecture. Essentially we created alternative pathways that 
“mirrored” the vulnerable connectors within the architecture and using agents could find and 
recruit new substitute service providers and gauges (including all their service dependencies) 
based on need. In addition to responding to faults, these agents learned how to improve their 
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performance by being more selective about which services they used. They used external 
guidance (Constraints) and their own previous experience (Hints) to make choices. 

The reactive repair model is based on the intrinsic qualities of an SC (workflow) network. An SC 
network is able to dynamically re-configure itself based on the performance of constituent 
services. It can on-the-fly bring to bear Gauges to test operational parameters of the system and 
of services. It can seek alternative pathways and service providers based on need. These qualities 
are basic to the behavior of an SC network. 

The gist of the adaptation model (Organized Repair in Figure 14) was to use flow of information 
amongst SC networks. In the forward direction, Hints are used to shape which services are used 
by the agents. Services may be selected subject to performance expectations (e.g., previous 
experience). In the reverse direction, metrics flow back and serve as the information basis for the 
infrastructure, generating new Hints for future use by the agents. 
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Component
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Figure 23 Architecture Adapter (Connector) abstracts internal details 

Figure 23 is a schema of the 2002 DASADA technical demonstration (SmartChannels), where 
select connections between services in an intelligence analyst’s application were mirrored using  
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an agent-based pathway. (Logically, the connection is depicted as a single connector, when in 
fact, in both cases, this is a simplification of the actual implementation.) 

The SmartChannels system could circumvent vulnerable Geoworld connectors (e.g., JINI [11], 
RMI) via an alternative SC agent system. The SmartChannels system would reconfigure itself to 
reflect performance metrics. Figure 24 represents the idealized picture of the demonstration 
system. The actual demonstration system scenario threads appear later in Figure 27. 
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Figure 24. 2002 Demonstration system (idealized). 

In 2002 we demonstrated how an Architecture Description Language (ADL) can be used to 
monitor and adapt service architectures from notification events. We demonstrated how 
capturing publish/subscribe events from the SC layers can then be converted “on-the-fly” into 
ACME ADL models. One of the important issues here was how to handle inconsistency in a 
stream of events as they poured into the Event Atlas. Given the distributed nature of an SC 
system, events would arrive out of order as well as some events may not appear at all (logging 
channels may be down or unreliable). There were two aspects of this challenge: 

• Order the events 
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• Decide how long to wait for missing events 

• Decide how to minimize architecture model impact when missing events 

The 2002 version of the EventAtlas primarily focused upon the latter two concerns. It exposed a 
plugin model where we tested and planned to more fully explore use of Columbia University's 
EventDistiller to filter events (temporally) as a supporting service. 

In the 2002 demonstration we used the ACME Architecture Description Language (ADL) [32] to 
represent an external model of the SC workflow. This model was built using publish/subscribe 
events captured from the runtime of the demonstration system - events were converted on-the-fly 
into ADL. By decoding the events in context of knowledge about the SC protocol – the 
EventAtlas (Figure 25) can generate and display ADL in ACME Studio [28] even when the 
underlying SC system is changing quickly. 
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Siena Channel
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Region plugins (consumers) of select 
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Figure 25 Service and Contract workflow events were captured using logging (Log4J) channels and 
coverted into ADL internal form. ADL internal forms were then translated on-the-fly into various external 

consumer formats (UI, ACME ADL). 

In 2002 we further demonstrated how a distributed workflow memory system can be used to 
optimize performance (service discovery) and expectations using purely local mechanisms. Hints 
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were computed by the infrastructure from metrics that flowed back with the workflow Results. 
Hints were used to alter how future workflows would behave.  

For the demonstration, service invocation times were flowed back along the workflow along with 
the Results – these were then observed by the SCConnector infrastructure elements at each 
agent. Hints would then be composed by the SCConnectors (default behavior); Hints would be 
attached to future workflows that passed by the agent. Like all Directives, Hints would flow 
downstream in the workflow from the point of insertion. In the 2002 demonstration, we also 
illustrated the concept of information decay – we illustrated that it could play in deconflicting 
Hints produced by many agents in a large system. 

We further demonstrated the future role of the DASADA Probe Bus [3] - used in conjunction 
with “CDIGauges” to laterally inhibit substitute services within a single agent. The idea here 
was that services within an agent could compete in parallel and inhibit other poorer performing 
services as they progressed. Competing substitute services could effectively self-select a winner 
using a CDIGauge. CDIGauges would monitor a cluster of substitute services within an agent 
shut down the least effective substitutes and therefore conserving resources. 

In 2001 we developed an infrastructure and strategy for dealing with service exceptions (e.g., 
failures, time-outs) through service substitution. In 2002 we continued with this strategy, but 
elaborated upon it, containing it within a more complete adaptive model. Specifically, in 2002 
we layered a Directives mechanism that influenced the shape of the workflow during its 
construction and subsequent processing. (Note that a Directive can be either a Constraint or a 
Hint). 

In 2001 we demonstrated how Constraints can stimulate the infrastructure to recruit other 
“Gauge” services and to verify some aspect of the operating environment [3]. In 2002 we added 
SC mechanisms to facilitate the automatic substitution of services that violate Constraints (e.g., 
timing expectations or feedback from a Gauge service); for example, when an eligible local 
substitute exists. The substitute is eligible in the sense that it has been previously Accepted (by 
the substitute Service Provider) and Contracted (by the SC infrastructure) for such a contingency.  

In 2002 we generalized the Constraint mechanism so that Constraints became just one type of 
Directive. In 2002, a new kind of Directive, the Hint, was introduced. All Directives act as types 
of messengers – they are “morsels” of information that are propagated along the workflow as it 
self-assembles across the system. A single type of Constraint was developed and used to 
motivate an infrastructure evaluation of a Contract either just before (PRE) or after (POST) 
invocation of the contracted service (depending upon the Constraint parameters). This could as a 
side-effect lead to the recruitment of additional Gauge services, etc. [3]. Hints also shape the 
workflow during the service-assembly process. 

For example, Hints can suggest service destinations. For example, based upon past experience, a 
Hint might suggest to an agents infrastructure about to issue a remote Request, that it should go 
to X instead of Y. Another type of Hint was used by the infrastructure to encode what it thought 
was a “reasonable” (from previous experience) invocation time associated with a particular 
service. For example, based on past performance, if service “Foo” takes about 400 millisecond to 
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invoke – then a Hint may be generated to indicate that a significant deviation from this might be 
grounds for timing-out a “Foo” service encountered. 

Hints are tagged with a weight that reflects the strength of that Hint as suggested by its creator 
SC infrastructure at a specific agent. In the current system – Hints weights reflect the “quality” 
of the metrics used to compose that Hint. 

Figure 26 depicts the 2001 demonstration scenario, where workflows “ebbed and flowed” trying 
to build structures in the “forward” direction (outwards from the root Request insertion point). 
As these workflows are wired-up, certain information, namely Directives (Constraints and Hints) 
travel with them. It is important to emphasize that from the point of insertion, Constraints and 
Hints travel downstream as the workflow is constructed. Directives can be inserted by either the 
infrastructure or by an external source actor (application or user).  

Data, Directives (Constraints, Hints)
Metrics,       Results

Bi-directional flow of both control 
and information.   Control (and 
information) can be from both the 
infrastructure and application 
layers.

Google

AltaVista

Retry decision issued by Service

User Abstract Query Service

URL Query Services

Google Query Service

Cache Services

AltaVista Query Service

 

Figure 26: Service and Contract workflows create bi-directional information flows. Past performance 
shapes future performance. 

BBN successfully demonstrated in 2002 an Adaptive Mirroring technique for use with SOS 
architectures. The key idea was to probe potential bottlenecks in a target system (GeoWorlds 
connectors) and route data to alternative services and channels when these GeoWorld connectors 
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failed. The alternative services and channels resided in the SC system. It was said to have 
mirrored the target services because it monitored the health of the system at specific points and 
was able to provide contingencies when needed. When the application failed at the probed points 
(e.g., via demonstration), then control and data was shifted to the alternative agent system. 
Connectivity into and out of the mirroring SC system was via Remote Method Invocation (RMI) 
and HTTP. 

The 2002 annual demonstration targeted the GeoWorld’s JobPool and external connectors to 
remote services at ISI in California for mirroring. The JobPool dispatched messages from the 
GeoWorld’s client to supporting GeoWorld’s services (local and remote). 

In 2002 we probed the JobPool and monitored it with an SC system. When the JobPool was 
stressed (simulated), the SC system would switch processing to an alternate SC system. The 
alternate system had access to substitute instantiations of services used by GeoWorlds, such as 
ISI’s Keyword Extractor and Noun Phraser. Results were returned from within the alternate 
system back to the original application. 

Within the alternate SC system a large pool of substitute services using a “simulation wrapper”. 
The wrapper allows us to configure each component instance with a different performance 
profile with different failure rates and invocation latencies. In this way, a small set of actual 
components (2) could be “cloned” into a larger number (>50). 

The demonstration SC system was said to mirror the Geoworld’s client in that for certain probed 
errors it would be able to find and swap-in use of services from a “pool” of substitutes. In the 
demonstration, services would be replaced because of exception noted at the JobPool or because 
of a Constraint violation (reflecting some bandwidth, load-balancing consideration, etc). In the 
2002 demonstration, the pool of substitute services was predetermined. We have looked at 
enhancing future versions of our agent infrastructure to take advantage of those Cougaar [2] 
features that pertain to the dynamic loading and migration of components within a mirroring 
architecture. 

Figure 27 is a schematic of the 2002 DASADA demonstration system. This system involved 
approximately 18 nodes and 150 components. There were three main scenarios exhibited: 

• Geo Worlds (GW)-Keyword Extractor Scenario 

• Simulation Scenario 

• GW-Noun Phraser Scenario 

The GW-Keyword Extractor Scenario featured provided alternative GW-Keyword Extractor 
services to GeoWorlds. During the demonstration, the GeoWorlds client was forced to fail using 
its own connectors to the remote (ISI) service. Within the SC system, two types of alternate GW-
Keyword Extractor services were cloned to form two different “pools” of services. The different 
types of services were co-mingled in the different agents. This scenario showed how over time 
using Hints the SC system would learn to favor one pool of services over the other (the fast one), 
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however, as the load on the system would be throttled up, then when the supply of fast services 
would become saturated, then the slow ones would join the fray.  

The GW-Noun Phraser Scenario emphasized how a CDIGauge could be used to successively 
prune a pool of contemporaneously executing services as they started to indicate failure (via a 
simple Gauge that measured logging warnings and errors). Failure was again induced by 
simulation. As described earlier, the CDIGauge was a stand-in for a future DASADA Common 
Gauge Infrastructure service. 

The Simulation Scenario involved the most agents and used a number of simulated services to 
emphasize basic SC features for demonstration. 

Significant of the SmartChannels composition was that the three threads co-existed on multiple 
hosts and Java Virtual Machines. Individual agents were largely unique (though not exclusively) 
to one thread or another. A top-level agent gated Requests by type to different thread groups. 
This is indicative of how a single physical implementation substrate can support many different 
functional threads. 

Smartchannel1

Smartchannel2

Smartchannel3

Smartchannel4

GW- Keyword Extractor scenario

Smartchanne41

Smartchannel42
Smartchannel45

Smartchannel44

Simulation scenario

slow

fast

Smartchannel43

Smartchannel51

Smartchannel52-7

GW- Noun Phraser scenario 

Remote RMI 
service

3 scenario threads, ~18 agents, ~50 domain components, 
~100 infrastructure Plugins

Smartchannel42X

Smartchannel43X

 

Figure 27 2002 DASADA demonstration system: 18 nodes, ~150 Plugins. 
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As described earlier, in 2001 we used a commercial hyperbolic visualization tool to view the 
interactions of the Service and Contract components during execution. While this viewer was 
useful for displaying and navigating a vast quantity of low-level SC events (publish subscribe 
events associated with SC LDM) it was less useful for a system of any size. A more abstract 
representation of architecture would be necessary. In 2002 we constructed an ADL model on the 
fly from these low-level publish/subscribe events. The events were fed to the EventAtlas tool and 
allowed us to build up an architecturally meaningful depiction of the interactions of services 
(Connectors and Components). Figure 28 illustrates this mapping (idealized). 

In the 2002 demonstration, from the perspective of the architecture model, components and 
Service Providers were synonymous. Thus a graph of assembled Service Providers was 
represented by an ADL graph. However, if you recall Figure 27, just as a component, and a 
connector, can be an abstraction for finer software details – depending upon the desired fidelity 
of the model – so can components and connectors represent populations of services. 

Under this contract we started to look at the idea of an adaptive multi-level ADL model for SC 
systems. Could not a component in an ADL representation model some grouping of committed 
Service Providers, depending upon what the purpose of that model (what it were attempting to 
communicate)?  Furthermore, could these groupings be dynamically altered based on where the 
interest and attention of the consumer (viewer or application) was focused? 
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Figure 28 Architecture Description Language (ACME) used to provide more powerful action for visualizing 
they dynamics of an SC architecture. 
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5. Future Work 
Under this contract we implemented the AAI Toolkit – a collection of research capabilities for 
building adaptive SC architectures. Future work might continue along two basic thrusts: 

1. Other agent frameworks. 

2. Exciting research directions. 

We would like to experiment with other agent frameworks to insure the mobility (transparency) 
of the SC protocol across implementations. Furthermore, we would be interested in a “lighter 
implemention” of a framework for “what if” experimentation  – a framework that can be coded 
and manipulated at a higher level than with Java (Cougaar). While such a light framework would 
likely not be of sufficient quality to transition to operational environments, it would hasten 
experimentation and testing of new ideas. Then once ideas are firmed up they can be migrated in 
the AAI Toolkit (Cougaar) baseline. 

A number of exciting research directions were described earlier in the paper. These are indicative 
of the potential (and research difficulty) with identifying and describing technologies useful to 
adaptive system design. A few are highlighted below: 

• Enhancement of the SC Protocol to allow global stabilization of plans before execution. 
The research challenge is to do this via negotiation of agents and services, in the spirit of 
“consensus building” vs. using a centralized device (lock or control). 

• Development of Adaptive Service Neighborhoods. What distance may a service reach 
out? What is the measure of distance? Is it the workflow graph distance, or some other 
measure of the separation within a process? 

• Synergy via interaction with 3rd party Quality of Service and monitoring systems. This 
would build upon the idea that Gauges can in fact act as a proxy for an external Gauge 
service (such as DASADA Runtime Gauge Infrastructure). 

• Extend the SC protocol to enable multiple parallel Executor Plugins within a single 
agent. What is the proper granularity of agent vs. service, and how can we quantify this 
relationship? Should agents encapsulate many services or should there be many agents? 
Ultimately we feel the answer depends upon the application and the granularity of the 
service/components. 
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• Foviating views of SC architecture1. We started to look at the idea of an adaptive multi-
level ADL model for SC systems. Could not a component in an ADL representation 
model some grouping of committed Service Providers, depending upon what the purpose 
of that model (what it were attempting to communicate)?  Furthermore, could these 
groupings dynamically change based on where the attention of the consumer (viewer or 
application) was focused? 

                                                 

1 Data from head position trackers is used to compute the stereoscopic display images in 
immersive Virtual Environments. Gaze tracking can be used to further improve the design of 
visual displays. The resolution of the displayed image can be decreased as pixels get further 
away from gaze direction since the resolution of the retina decreases towards the periphery of 
field of view (the so-called foviating effect). 
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6. Supporting Investigations 
A number of supporting/lesser investigations were performed during the period of performance 
of this program. The purpose of these investigations was to illustrate the versatility of the Service 
and Contract protocol and the AAI Toolkit for use within the DASADA program: 

• The Service and Contract protocol is event based – this enables the system to react to 
changes in its structure and/or environment more effectively. 

• A mature and well-defined component model (leveraged from the underlying Cougaar 
infrastructure). 

• The Service and Contract idiom based on Blackboard objects allows easy extension of 
the language. 

6.1 Capability-Secure Data Access for Trusted Service Coordination in Cougaar 
Societies 

Described below was a prototype SC system that tested a capability-secure technology [1] to 
securely manage fine-grained access of data and services [2]. The introduction of a capable-
secure protocol into the SC system was hypothesized to better enable fine-grained exchange of 
trust within the system. 

6.1.1 Service and Contract Distributed Workflow Introduced 

As noted previously, the Service and Contract (SC) workflow technology was used as means to 
reliably assembly of services within a distributed publish/subscribe framework. 

This investigation looked at whether use of a fine-grained capability security model was 
compatible with an SC protocol. This would contrast with a Access Control List (Matrix) 
security model. The following advantages were hypothesized: 

• Fine-grained privilege model 

• Privileges that can be tied to specific pieces of data (objects on the Blackboard) 

• Transferable and revocable privileges 

We were exploring the idea that an ACL model, in itself, might not be fine-grained enough for a 
very large SC system operating in a dynamic trust environment. Thus, it may be too costly to use 
ACL’s to grant partial and temporary access to some data on an agent Blackboard (e.g., defining 
an ACL to match every use/access-pattern, etc.). We were looking for an approach to manage 
privileges that better scales to a dynamic SC environment where revocation and alteration of 
privileges can be entertained without continuous ACL modifications. 

6.1.2 Capabilities Security Model 

We explored what it would mean to use a capabilities model (based on E [17]) for mediating 
object-level access within an SC system. Objects on the Blackboard that were granted external  



55 

access were assigned a cryptographic Uniform Resource Identifier (URI) handle. Handles are 
distributed as cryptographic URIs that make the names hard to guess what they reference. This 
enabled the following: 

• Agents may share with other agents cryptographic URI references to objects they 
encapsulate. These URIs may reference local data or may authorize the reservation of a 
local service by another agent. 

• URIs may be de-referenced over a secure channel to a Cougaar integrated E [22] server. 
SC Cougaar agents use a specialized PlugIn (SCConnector) to encapsulate an E server 
and manage interactions with the SC infrastructure. 

• URIs can be invalidated at the agent who owns the referenced data or service. In so doing 
an agent wishing to revoke another agent’s visibility or access to that object can do so. 
Because an arbitrary number of cryptographic URIs can be issued to reference any piece 
of data, individual references can be selectively revoked without repealing everyone’s 
access. 

6.1.3 Capability-secure Data Access and Cougaar 

The addition of capable-secure features to the SC infrastructure was hypothesized to be useful in 
enhancing agent collaborations as follows: 

• The fine-grained transfer of trust permits infrastructure strategies where visibility and 
access to distributed data and services can be limited to a “need to know basis” (see 
Figure 29). 

• Delegation of trust to third parties is permitted (see Figure 30). 

• The fine-grained revocation of trust (capabilities) is necessary for dynamic systems (see 
Figure 31). 

Within the context of the SC infrastructure, a minimal prototype of a new variant of the 
SCConnector Plugin (SC infrastructure) was developed and evaluated. This SCConnector 
integrated a capability-secure server that could on-demand bind Cougaar Blackboard objects to 
“capable-secure” collections of objects to other agents requesting visibility into the data over 
HTTP. Note that this new functionality was orthogonal to the SC purpose of the SCConnector. It 
was a convenient new piece of test functionality that was assumed by the SCConnector. 

It was shown that we were able to assign “capable” URIs to agent Blackboard objects. A capable 
URI is a cryptographic reference to a capable-secure object encapsulated by that agent. It was 
shown that this new SCConnector was able to act as a server to answer calls for access to URI 
referenced data. In this way service reservations and data can be exchanged. 
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Figure 29 Basic Case. Capability is transfered (blue dot) from agent A to agent B for visibility into select 
objects (black circle). 

In the figure above, note that visibility into agent Blackboards is scoped by agent boundaries. 
Agents share Capability URIs. An agent that holds a Capability URI is able to access the data 
object to which the object refers. In the E language [20], a Capability URI may look like: 

cap://128.33.238.61:1106/PiBnoCERpHxbZEzjvPVtd8FO19G/Ujh2fdgarH1unAdtuRU483XFb
2S 

We had prototyped an AAI system to use Cougaar PlugIn encapsulation of an E server to 
manage distributed external access into Cougaar runtime objects using these encrypted URIs. 
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Figure 30 Elaboration of mechanism: Service and Contract infrastructure. 
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Figure 31 Agent B delegates capability to Agent C. 
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Figure 32 Revoking a priviledge (URI blocked) 
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String [] args = new String[2];
args[0] = "-De.home=\"..\\..\\..\\e"; //"-De.home=\"c:\\erights.org\"";
try{

PrintWriter stream = new PrintWriter(System.out);
LineReader reader = new LineReader();
reader.setSource(eSource);
System.out.println("[ESPPlugIn.execute()] Starting Interp.");
TextWriter tw = new TextWriter(stream);
myRunner = new Runner("My Main Vat Thread");

synchronized( myLock )
{

myInterp = Interp.make(args,
null,
tw,
tw,
myRunner,
reader,
null,
false);

}
stream.flush();
if (false == myInterp.interpret(! myInterp.getInteractive())) {

new RuntimeException("Failed to interpret!");
}
stream.flush();

} catch (IOException ex ) {
ex.printStackTrace();

}
 

Figure 33 Sample code. E interpreter (version 8.9.1b) integration point with Cougaar PlugIn. The 
SCConnector PlugIn is an “E” server executing an E server script. Objects from the agent runtime (via 

PlugIn) are bound to server variables and capability URIs are returned. 

6.2 Service Advertisement using Multicasting 

A simple experiment based on the Reliable Multicast Framework and Reliable Adaptive 
Multicast Protocol (RMF/RAMP) product distributed by TASC/Northrop Grumman [26] was 
conducted. The purpose of this experiment was to test/show how the Service and Contract 
infrastructure can be specialized with new capability (multicast neighborhoods) and conduct 
themselves in an SC system. An emphasis of our approach was to encourage embellishment of a 
foundational SC protocol with new behaviors. The claim was that diversity should not 
necessarily undermine the core capability of the system. 

Ostensibly, the experimental hypothesis was whether a multicast “service advertisement” is 
efficient means of finding and recruiting services in the local neighborhood of an agent. 
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Figure 34. Early experimentation model emphasizes multicast for “service advertisement” vs. content 
distribution. 

Figure 34 above illustrates the optional use of reliable multicast (via Router infrastructure 
PlugIn) during the fan-out “service request” phase of constructing distributed workflows. An 
agent that cannot recruit a local service to satisfy a request for service will broadcast the request 
to other agents in case those other agents are able to do so. Should one or more agents be able to 
perform the requested service from within their local context, they will respond to the sender (on 
a point-to-point basis). 

The SC Router is part of the “Service and Contract” infrastructure PlugIn. Earlier we described 
how this is the infrastructure component responsible for deciding and executing upon a number 
of S+C infrastructure functions. It decides, specifically, whether, when, and to who to send 
service requests that aren’t satisfied locally. In our experiment, we specialized some of the 
SCRouter used by the agents so that they multicast in the forward direction (to solicit new 
services). The default SCRouter used point-to-point messaging amongst potentially many agents. 
The return channel was point-to-point amongst a pair of agents (more precisely the return 
channel is handled by an SCConnector Plugin – a component that operates in tandem with 
SCRouter). In the forward direction (workflow downstream) solicitations for services are sent. In 
the reverse direction (workflow upstream), results and metrics are returned. 
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Agents use SCRouterMC and SCConnectorMC Plugins to communicate to others in the 
multicast group. This is instead of the SCRouter and SCConnector Plugin pairs. However, what 
is powerful is that a single agent can have both sets of Multicast plugins participating in the same 
multicast group “listen” to the same group Class D IP address. 

SCRouterMC

SCRouterMCSCConnector

SCConnector
multicast

Point-to-point

 

Figure 35 Optional multicast inserted as PlugIns. Multicast “routers” are specialized SimpleRouter 
infrastructure PlugIns. 

This experiment show how different infrastructure capabilities interrelated by module 
relationships can be used to construct diverse society of agents spanning very different 
connectivity types and profiles (Figure 36). Factoring infrastructure behavior into components 
enables construction of diverse functional communities still able to interoperate. In this 
experiment, the simple SimpleRouter infrastructure Plugin was extended via the 
SimpleReceiverMC. In this way, it was possible to have two communities: One in a multicast 
group, one not. Furthermore, because of the ability of infrastructure plugins to co-exist within a 
single agent – an agent can be communicating with its neighborhood via a diverse range of 
connections. 

This particular idea was used in the 2002 DASADA demonstration – in that case though, the 
specialized Plugins communicated with the DASADA Gauge Bus (described earlier). 
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MyRouterMC

 

Figure 36 Modularizing infrastructure into Plugins permits diverse societies to be constructed. For 
example, working groups within a society can choose different communication mechanisms to suit their 

context. 
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